

Features

- Input voltage:2.5V~6.5V
- Output range:1.0V~3.6V (customized by every 0.1V step)
- Maximum output current: 400mA @ VIN-VOUT=0.5V
- PSRR: 75dB @1KHz

Applications

- MP3/MP4 Players
- Cellphones, radiophone, digital cameras

- Dropout voltage:220mV @ IOUT=200mA
- Quiescent current: 50µA Typ.
- Shut-down current: <1µA
- Recommend capacitor:1µF
- Ultra Low Output Noise:20µVRMS
- Bluetooth, wireless handsets
- Others portable electronics device

General Description

The HM1156 is a high accuracy, low noise, high speed, low dropout CMOS Linear regulator with high ripple rejection and fast discharge function. The devices offer a new level of cost effective performance in cellular phones, laptop and notebook computers, and other portable devices.

HM1156 can provide product selections of output value in the range of 1.0V~3.6V by every

0.1V step.

The current limiter's fold-back circuit also operates as a short circuit protection and an output current limiter at the output pin.

The HM1156 regulators are available in standard SOT23-5L and DFN1 \times 1-4 packages. Standard products are Pb-free and Halogen-free.

Selection Table

Part No. Package		Temperature	Tape & Reel	
HM1156BXXMR	SOT23-5L	$-40 \sim +85 ^{\circ}\mathrm{C}$	3000/REEL	
HM1156BXXDR	DFN1×1-4	$-40 \sim +85 ^{\circ}\mathrm{C}$	10000/REEL	

Note: XX indicates 1.0V~3.3V by 0.1V step. For example, 28 means product outputs 2.8V

Order Information

HM1156B(1)(2)

Designator	Description
	Voltage version:
	XX: 1.0V~3.6V by 0.1V step
	Example:
	28: 2.8V
	Package:
2	MR: SOT23-5L
	DR: DFN1×1-4

Block Diagram

Pin Assignment

SOT23-5 (Top View)

PIN NO	SYMBOL	I/O	DESCRIPTTION	
SOT23-5L	STMBUL	1/0	DESCRIPTION	
1	VIN	Power	Input	
2	GND	Ground	Ground	
3	EN	I	Enable(Active high, not floating)	
4	NC	/	Not connected	
5	VOUT	0	Output	

PIN NO	SYMBOL	1/0	DESCRIPTTION	
DFN1×1-4	STWIDUL	I/O	DESCRIPTION	
1	VOUT	0	Output	
2	GND	Ground	Ground	
3	CE	I	Enable(Active high, not floating)	
4	VIN	Power	Input	

Absolute Maximum Ratings

Input Voltage	0.3V to 8V
Output Current	500mA
Operating Temperature	40℃ to 85℃
Ambient Temperature	-40 ℃ to 85℃

Storage Temperature55 $^\circ\!\mathrm{C}$ t	to 150 ℃
Package Lead Soldering Temperature	260 ℃
Junction Temperature40°C	to 125℃

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit	
θ	Thermal Resistance (Junction to Ambient)	SOT23-5	500	°C/W	
AL ^θ	(Assume no ambient airflow, no heat sink)	DFN1×1-4	250	C/w	
D_		SOT23-5	0.30		
PD	Power Dissipation	DFN1×1-4	0.60	W	

Note: P_{D} is measured at Ta= 25 $^\circ\!\!\mathbb{C}$

Electrical Characteristics

The following specifications apply for V_{OUT}=2.8V, T_A=25 $^\circ \! \mathrm{C}$, unless specified otherwise

SYMBOL	ITEMS	CONDITIONS	MIN	ТҮР	MAX	UNIT
V _{IN}	Input Voltage				6.5	V
V _{OUT}	Output Range	$V_{OUT} < 2V V_{IN} = 2.7V, I_{OUT} = 1mA$	-3	V _{OUT}	3	%
V OUT	Output Kange	$V_{OUT} \ge 2V, I_{OUT}=1mA$	-2	V _{OUT}	2	70
Iq	Quiescent Current	V _{OUT} =2.8V, I _{OUT} =0		50		μΑ
I _{LIMIT}	Current Limit	$V_{IN}=V_{EN}=4.5V$		500		mA
V	Dronout Voltage	V _{OUT} =2.8V, I _{OUT} =200mA		220	250	mV
V _{DROP}	Dropout Voltage	Vout=2.8V, Iout=300mA		320	350	шv
$ riangle V_{LINE}$	Line Regulation	V _{IN} =2.7~5.5V, I _{OUT} =1mA		0.01	0.15	%/V
$ riangle V_{LOAD}$	Load Regulation	V _{OUT} =2.8V, I _{OUT} =1~300mA		40	70	mV
I _{SHORT}	Short Current	$V_{EN}{=}V_{IN},~V_{OUT}$ Short to GND with 1 Ω		80		mA
I _{SHDN}	Shut-down Current	V _{EN} =0V			1	μA
DCDD	Power Supply Rejection	V _{IN} =5V _{DC} +0.5V _{P-P} F=1KHz, I _{OUT} =10mA		75		15
PSRR	Rate	$V_{IN}=5V_{DC}+0.5V_{P-P}$ F=1MHz, $I_{OUT}=10mA$		55		dB
V _{ENH}	EN logic high voltage	V _{IN} =5.5V, I _{OUT} =1mA	1.2		VIN	V
V _{ENL}	EN logic low voltage	V_{IN} =5.5V, V_{OUT} =0V			0.4	V
I _{EN}	EN Input Current	$V_{EN}=0$ to 5.5V			1	μA
e _{NO}	Output Noise Voltage	10Hz to 100KHz, C_{OUT} =1 μ F		20		μV_{RMS}

Application Circuits

Marking Description

	MARKING			
	Package			
VOLTAGE(V)	SOT23-5、SOT23-3、SOT23			
1.2	LVBX			
1.5	LVEX			
1.8	LVKX			
2.5	LVTX			
2.8	LVXX			
3.0	LVZX			
3.3	LV2X			

1 Represents product series

Mark	Product Series	
L	HM1156	

2 Represents type of regulator

М	Product series	
Vout:0.1~3.3V	Vout:3.4~6.0V	
V	А	HM1156

3 Represents output Voltage

Mark	Output Vo	ltage(V)	Mark	Output Vo	ltage(V)
0	-	3.1	F	1.6	4.6
1	-	3.2	Н	1.7	4.7
2	-	3.3	K	1.8	4.8
3	-	3.4	L	1.9	4.9
4	-	3.5	М	2.0	5.0
5	-	3.6	Ν	2.1	-
6	-	3.7	Р	2.2	-
7	-	3.8	R	2.3	-
8	0.9	3.9	S	2.4	-
9	1.0	4.0	Т	2.5	-
А	1.1	4.1	U	2.6	-
В	1.2	4.2	V	2.7	-
С	1.3	4.3	Х	2.8	-
D	1.4	4.4	Y	2.9	-
Е	1.5	4.5	Z	3.0	-

(4) Respresents production lot number

0 to 9, A to Z reverse character of 0 to 9, A to Z repeated (G, I, O, Q, W excepted)

DFN1x1-4L

"N" : Product code, here use "L" stand for "HM1156" .

"W" : The week of manufacturing. "A" stands for week 1, "Z" stands for week 26, "a" stands for week 27, "z" stands for week 52.

"V" : Output voltage code.

Output voltage (V)	code
1.0	А
1.2	В
1.5	С
1.8	D
2.5	E
2.6	F
2.8	М
3.0	G
3.3	Н
3.6	I

Typical Performance Characteristics

Temperature (℃)

 $C_{IN}=1uF, C_{OUT}=1uF, V_{IN}=4.5V, V_{OUT}=2.8VT_{A}=25^{\circ}C, unless specified otherwise. (Package:SOT23-5L)$

InputVoltage (V)

EN ON / OFF

φ

Power ON / OFF

Line Transient

Load Transient

Application Information INPUT CAPACITOR

An input capacitor of $\ge 1.0\mu$ F is required between the VIN and GND pin. This capacitor must be located within 1cm distance from VIN pin and connected to a clear ground. A ceramic capacitor is recommended although a good quality tantalum or film may be used at the input. However, a tantalum capacitor can suffer catastrophic failures due to surge current when connected to a low impedance power supply (such as a battery or a very large capacitor).

There is no requirement for the ESR on the input capacitor, but the tolerance and temperature coefficient must be considered in order to ensure the capacitor work within the operation range over the full range of temperature and operating conditions.

OUTPUT CAPACITOR

In applications, it is important to select the output capacitor to keep in stable operation. The output capacitor must meet all the requirements specified the following in recommended capacitor table over all conditions in applications. The minimum capacitance for stability and correct operation is 0.6µF. The capacitance tolerance should be ±30% or better over the operation temperature range. The recommended capacitor type isX7R meet the full device to temperature specification.

The capacitor application conditions also include DC-bias, frequency and temperature. Unstable operation will result if the capacitance drops below minimum specified value (see the next section Capacitor Characteristics).

The HM1156 is designed to work with very small ceramic output capacitors. A 1.0μ F capacitor (X7R type) with ESR type between 0 and 400m Ω is suitable in the applications. X5R capacitors may be used but have a narrow temperature range. With these and other capacitor types (Y5V, Z6U) that may be used, selection relies on the range of operating conditions and temperature range for a specified application. It may also be possible to use tantalum or film capacitors at the output, but these are not as good for reasons of size and cost. It is also recommended that the output capacitor be located within 1cm from the output pin and return to a clean ground wire.

NO-LOAD STABILITY

The HM1156 will remain stable and in regulation with no external load. This is especially important in CMOSRAM keep-alive applications.

ON/OFF INPUT OPERATION

The HM1156 is turned off by pulling the EN pin low, and turned on by pulling it high. If this function is not used, the VEN pin should be tied to VIN to keep the regulator output on at all time. To assure proper operation, the signal source used to drive the VEN input must be able to swing above and below the specified turn-on/off voltage thresholds listed in the Electrical Characteristics section under VIL and VIH.

Package Information SOT23-5 Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
А	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
с	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°C	8°C	0°C	8℃

DFN1×1-4 Outline Dimensions

