

DW01A is equipped with a high-precision voltage detection circuit and a delay circuit. By detecting the voltage and current of the battery, it achieves protection against overcharging, discharging, and overcurrent. Suitable for the protection circuit of single lithium ion/lithium polymer rechargeable batteries.

Features

1) High accuracy voltage detection		
 Overcharge detection voltage 	4.300V	
 Overcharge release voltage 	4.100V	
 Over discharge detection voltage 	2.400V	
 Over discharge release voltage 	3.000V	
2) Discharge overcurrent detection function		
 Discharging overcurrent detection voltage 	0.150V	
 Short-circuit detection voltage 	1.000V	
3) Charging overcurrent detection voltage	-0.150V	
4) Load Detection function		
5) Charger Detection function		
6) 0 V battery charge function		
7) Ultra-low power dissipation		
Normal mode	1.5 μА (Тур.)	(Ta = +25°C)
Overdischarge mode	0.7 μА (Тур.)	(Ta = +25°C)
8) RoHS, PB-Free, HF		

Application

• Lithium-ion/lithium-polymer rechargeable battery

Packages

• SOT23-6

Block Diagram

Products Catalogue

Part No.	Overcharge detection voltage [V _{oc}]	Over-charge release voltage [V _{ocR}]	Over-discharge detection voltage [V _{ob}]	Over- discharge release voltage [V _{ODR}]	Discharge overcurrent detection [V _{EC}]	Short-circuit current detection [V _{SHORT}]	Charge overcurrent detection [V _{сна}]
DW01A	4.300 V	4.100 V	2.400 V	3.000 V	0.150 V	1.000 V	-0.150 V

Table 1

Part No.	0 V Battery Charge Function	Release condition of discharge overcurrent status	Release Voltage of Discharge Overcurrent Status	Overcharge locking	Overcharge locking
DW01A	Available	Load disconnection	VDIOV	Available	Unavailable

Table 2

Pin Configurations

Figure 2

PIN	Symbol	Description
1	DO	Discharge power MOSFET control pin.
2	VM	Connected to charger negative voltage.
3	СО	Charge power MOSFET control pin.
4	NC	No Connection.
5	VCC	Positive power input pin.
6	VSS	Negative power input pin.

Table 3

Absolute Maximum Ratings

		(Unless otherwise specif	ied: Ta = +25°C)
ltem	Symbol	Ratings	Unit
Power supply voltage	VCC	-0.3 ~ 6	V
Input pin voltage for VM	VM	VCC-12 to VCC+0.3	V
Operating temperature	T _{OPR}	-40 ~ 85	°C
Storage temperature	Tstg	-55 ~ 125	°C

Table 4

Caution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded in any conditions.

Electrical Characteristics

				(Unless o	therwise spe	cified : Ta =	+25°C)
lt	tem	Symbol	Conditions	Min.	TYP.	Max.	Unit
powe vo	r supply Itage	VCC	-	1.0	-	5.5	V
Normal	operating rrent	lvcc	VCC=3.5V	-	1.5	5.0	μA
over d consi	ischarge umption	IOPED	VCC =1.5V	-	0.7	1.5	μA
	detection voltage	Voc	VCC =3.5→4.5V	4.250	4.300	4.350	V
Overch arge	release voltage	Vocr	VCC =4.5→3.5V	4.050	4.100	4.150	V
	detection delay time	Toc	VCC =3.5→4.5V		80	160	ms
	detection voltage	Vod	VC5=3.5→2.0V	2.300	2.400	2.500	V
Overdis charge	release voltage	V _{ODR}	VCC =2.0→3.5V	2.900	3.000	3.100	V
	detection delay time	Тор	VCC =3.5→2.0V		40	80	ms
Dischar ge	detection voltage	VEC	VM-VSS=0→0.20V	0.120	0.150	0.180	V
overcur rent	detection delay time	T _{EC}	VM-VSS=0→0.20V		10	20	ms
Charge	detection voltage	Vcha	VSS-VM=0→0.30V	-0.180	-0.150	-0.120	V
overcur rent	detection delay time	Тсна	VSS-VM=0→0.30V		10	20	ms
Load short-	detection voltage	Vshort	VM -VSS=0→1.5V	0.700	1.000	1.300	V
circuitin g	detection delay time	TSHORT	VM -VSS=0→1.5V		300	600	μs
starting	ery charge g charger ltage	V _{0VCH}	0 V battery charge function "available"	1.2	-	-	V

Table 5	
---------	--

Function Description

1. Overcharge Condition

During charging, when the battery voltage is higher than V_{OC} and lasts longer than T_{OC} , the output voltage of CO will reverse, the charge MOSFET will be turned off and stop charging. This condition is called the overcharge condition.

The overcharge protection state will be released if any of the next conditions occurs:

- (1) $V_{CHA} < VM < V_{EC}$, When the battery voltage is less than V_{OCR} and stays period of time T_{OCR} .
- (2) VM> VEC (connecting to the load), Battery voltage is lower than Voc and stays period of time TOCR.

Caution: When a charger is connected after overcharge detection, the overcharge status is not released even if the battery voltage is below V_{OCR} . The overcharge status is released when the VM pin voltage goes over V_{CHA} typ. by removing the charger.

2. Over discharge Condition

During discharging, when the battery voltage is lower than Vod and lasts longer than Tod. The output voltage of DO will reverse. The discharge MOSFET will be turned off and stop discharging. This condition is called the over discharge condition.

During discharging, the over discharge state can be released in the following three cases:

- 1) Connecting to the charger VM \leq V_{CHA}, when the battery voltage is higher than V_{OD}.
- 2) Connecting to the charger ($V_{CHA} < VM < V_{EC}$), when the battery voltage is higher than V_{ODR} .
- 3) Disconnect the charger, when the battery voltage is higher than V_{ODR}.

3. Discharging Overcurrent Condition

During discharging, the voltage of VM becomes higher with the current increasing. When the voltage of VM is higher than Vec and stays longer than Tec, the discharge MOSFET will be turned off and stop discharging. This condition is called the discharging overcurrent state. If the voltage of VM is higher than VSHORT and stays longer than TSHORT, the discharge MOSFET will be turned off and stop discharging, and this state is called the "load short circuit state".

As long as the equivalent resistance value of the load increases or the load is disconnected, making VM<VEC, the discharge overcurrent state can be relieved and the normal state can be restored.

4. Charging Overcurrent Condition

During charging, If the VM pin voltage falls below the charging overcurrent detection voltage (V_{CHA}) and stays longer than the charging overcurrent detection delay time (T_{CHA}) or longer, the charging control FET turns off and charging stops. This action is called the charging overcurrent condition. Charging overcurrent protection will be released when we disconnect the charger (VM>V_{CHA}).

5. 0 V Battery Charging Function "Available"

This function is used to recharge batteries that have already self-discharged to 0V. When the 0 V battery charge starting charger voltage (V_{0CHA}) or higher is applied between P+ pin and P- pin by connecting a charger, the charging control FET gate is fixed to VCC pin voltage. When the voltage between the gate and source of the charging control FET becomes equal to or higher than the turn-on voltage (V_{th}) due to the charger voltage, the charging control FET is turned on to start charging.

At this time, the discharging control FET is off and the charging current flows through the internal parasitic diode in the discharging control FET. When the battery voltage becomes equal to or higher than the overdischarge detection voltage (V_{OD}), IC enters the normal condition.

Application Circuits

Component Symbol	Туре	Range	Unit
R ₁	470	470 ~ 1500	Ω
R ₂	2	1 ~ 3	kΩ
C1	0.1	≥ 0.1	μF

Note: R1, R2 cannot be omitted, and R1 must be	greater than or equal to 470 ohms.
--	------------------------------------

Package

SOT23-6

12

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	-	-	1.45
A1	0	-	0.15
A2	0.90	1.15	1.30
A3	0.60	0.65	0.70
b	0.39	-	0.49
b1	0.35	0.40	0.45
с	0.08	-	0.22
c1	0.08	0.13	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.60	1.70
e	0.85	0.95	1.05
e1	1.80	1.90	2.00
L	0.35	0.45	0.60
L1	0.35	0.60	0.85
L2		0.25BSC	
R	0.10	-	-
R1	0.10	-	0.25
θ	0.	-	8*
θ 1	7'	9*	11'
θ2	8'	10'	12*

NOTES: ALL DIMENSIONS REFER TO JEDEC STANDARD MO-178 C DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

SECTION B-B