

GENERAL DESCRIPTION

The HM6220 is an efficient linear voltage regulator with an ultralow-noise output, a very low dropout voltage (typically 17mV at light loads and 165mV at 150mA), and a very low ground current (600μ A at 100mA output). The HM6220 offers better than 1% initial accuracy.

Designed especially for hand-held, battery-powered devices, the HM6220 includes a CMOS- or TTL-compatible enable/shutdown control input. When shut down, its power consumption drops nearly to zero. The regulator ground current increases only slightly in a dropout, further prolonging the battery life.

The HM6220 key features are a reference bypass (BYP) pin to improve its already excellent lownoise performance, reversed-battery protection, current limiting, and overtemperature shutdown.

The HM6220 is available in fixed (-XX) and adjustable (Adj) output voltage versions in a small SOT-23-5 package.

The fixed output voltage version - HM6220-XX - may have a nominal output voltage (XX) within 1.5V to 12V.

FEATURES

- Ultralow-noise output
- High output voltage accuracy
- Guaranteed 150mA output
- Low quiescent current
- Low dropout voltage
- Extremely tight load and line regulation
- Very low temperature coefficient
- Current and thermal limiting
- Reverse-battery protection
- "Zero" off-mode current
- Logic-controlled electronic enable

APPLICATIONS

- Cellular telephones
- Laptop, notebook, and palmtop computers
- Battery-powered equipment
- PCMCIA V_{CC} and V_{PP} regulation/switching
- Consumer/personal electronics
- SMPS post-regulator/dc-to-dc modules
- High-efficiency linear power supplies

TYPICAL APPLICATION

J O 8442-XX

Fig.1. Ultralow-noise regulator

HD -)) ' 150ma low-noise ldo regulator

PIN CONFIGURATION

Adjustable Voltage

Fig.2

PIN DESCRIPTION

Pin		Name	Function
HM6220-XX	HM6220-adj		
1	1	IN	Supply input
2	2	GND	Ground
3	3	EN	Enable/Shutdown input: CMOS-compatible. Logic High = Enabled. Logic Low or Open = Shut-down.
4		BYP	Reference bypass: connect external 470pF capacitor to GND to reduce output noise. May be left open.
	4	ADJ	Adjust input: adjustable regulator feedback input. Connect to resistor voltage divider
5	5	OUT	Regulator output

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply input voltage (V _{IN})	20V to +20V
EN (enable) input voltage (V _{EN})	-20V to +20V
Power dissipation (P _D)	Internally limited (Note 2)
Lead temperature (soldering, 5 sec.)	260°C
Junction temperature (T _J)	40°C to +125°C
Storage temperature (T _{STG})	65°C to +150°C

OPERATING RATINGS (Note 3)

Input voltage (V _{IN})	+2.0V to +16V
	0V to V _{IN}
Junction temperature (T _J))40°C to +125°C
Thermal resistance, SOT	-23-5 (θ _{JA})(Note 2)

ELECTRICAL CHARACTERISTICS

(at $V_{IN}=V_{OUT}+1V$, $I_L=100\mu A$, $C_L=1.0\mu F$, $V_{EN}\ge 2.0V$, $T_J=25^{\circ}C$, unless specified otherwise; the **bold** values indicate -40°C $\le T_J \le +125^{\circ}C$)

Symbol	Parameters	Conditions	Min	Тур.	Max	Units
V _{OUT} (Note 4)	Output voltage accuracy	Variation from specified V_{OUT}	-1 -2		1 2	% %
$\Delta V_{OUT} / \Delta T$	Output voltage temperature coefficient	(Note 5)		40		ppm/°C
$\Delta V_{OUT}/V_{OUT}/V_{IN}$	Line regulation	$V_{IN} = V_{OUT} + 1V$ to 16V		0.004	0.012 0.05	%/V %/V
$\Delta V_{OUT} / V_{OUT}$	Load regulation	I _L =0.1mA to 150mA (Note 6)		0.02	0.2 0.5	% %
Vin-Vout	Dropout voltage (Note 7)	I _L =100μA		10	50 70	mV mV
		I∟=50mA		110	150 230	mV mV
		I _L =100mA		140	250 300	mV mV
		I _L =150mA		165	275 350	mV mV
I _{GND}	Quiescent current	V _{EN} ≤0.4V (shut-down) V _{EN} ≤0.18V (shut-down)		0.01	1 5	μΑ μΑ
I _{GND}	GND pin current (Note 8)	V _{EN} ≥2.0V, I _L =100µA		120	160 180	μΑ μΑ
		I _L =50mA		350	600 800	μΑ μΑ
		I _L =100mA		600	1000 1500	μΑ μΑ
		I _L =150mA		1300	1900 2500	μΑ μΑ
PSRR	Ripple Rejection	frequency=100Hz, I∟=100μA		75		dB
I _{LIMIT}	Current limit	V _{out} =0V		320	600	mA
$\Delta V_0 / \Delta P_D$	Thermal Regulation	(Note 9)		0.05		%/W
E _{no}	Output Noise	I_L =50mA, C _L =2.2µF, 470pF from BYP to GND		260		$\frac{nV}{\sqrt{Hz}}$
Enable input			1	1		
VIL	EN input logic Low voltage	Regulator shut-down			0.4 0.18	V V
V _{IH}	EN input logic High voltage	Regulator enabled	2.0			V
I _{IL}	EN input current	V _{IL} ≤0.4V		0.01	1	μA
		V _{IL} ≤0.18V			2	μA
		V _{IH} ≥2.0V	2	5	35	μA
		V _{IH} ≥2.0V			40	μA

Note 1: Exceeding the absolute maximum rating may damage the device.

Note 2: The maximum allowable power dissipation at any T_A (ambient temperature) is $P_{D(max)} = (T_{J(max)} - T_A) + \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The HM6220 (all versions) θ_{JA} value is 220°C/W (the chip is mounted on a PC board).

Note 3: The device is not guaranteed to function outside its operating rating.

Note 4: HM6220-adj has V_{REF}=1.242±1%, but the minimum output voltage for HM6220-adj must be above V_{OUT(min)} = 1.5V

Note 5: The **Output voltage temperature coefficient** is defined as the worst case voltage change divided by the total temperature range.

Note 6: The **Load regulation** is measured at a constant junction temperature using low duty cycle pulse testing. The parts per this parameter are tested in the load range of 0.1mA to 150mA.

Note 7: The **Dropout voltage** is defined as the input-to-output differential, at which the output voltage drops 2% below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2 V must be taken into account.

Note 8: The **GND pin current** is the regulator Quiescent current plus the pass transistor base current. The total current drawn from the supply is the sum of the load current plus the GND pin current.

HD -)) ' 150ma low-noise ldo regulator

Note 9. Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 150mA load pulse at V_{IN} = 16V for t = 10ms.

ŴМ IN OUT Vour -0 ş BYP COUT CBYP (Optional); Bandgap -Ref. ΕN Current Limit Thermal Shutdown GND HM6220-XX

BLOCK DIAGRAMS

Fig.3a. Ultralow-noise fixed regulator

Fig.3b. Ultralow-noise adjustable regulator

